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1. Introduction and conclusions

The search for vacua of string theory that resemble the SM has a 24 year history, and is

ongoing. In the last decade, orientifold vacua attracted a lot of attention in this respect

as it became understood that they allow a bottom-up approach [1 – 3] in assembling the

SM ingredients. There are many distinct ways of embedding the Standard Model group

into that of quiver gauge theories, which appear in the context of orientifolds and these are

reviewed in [4]–[7]. A general framework for classifying such embeddings in orientifolds, in

particular that of the hypercharge, was developed in [8] based on some mild assumptions.

This framework was applied to orientifolds that can be constructed from Gepner models

(studied earlier in [9 – 15]), using the algorithmic techniques of RCFT developed in [16].
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A total of 19345 chirally distinct top-down spectra were found, that comprise so far the

most extensive such list known in string theory, [8]. For 1900 of these spectra at least

one tadpole solution was also found. Combined with earlier results for vacua realizing the

Madrid incarnation [17] of the Standard Model, [15] they contain the largest collection of

vacua (tadpole solutions) chirally realizing the (supersymmetric) SM.

Unfortunately, further progress in this direction is hampered by the fact that the tools

to calculate the superpotential and other important low energy quantities are not yet so

well developed.

In this paper we will focus on a small subset of such vacua that share a simplifying

property: their CFTs and BCFTs can be constructed out of free fields. It is known that

there are two Gepner models that are equivalent to free fields. The k = 1 model is

equivalent to a free boson with c = 1, [18, 19] while the k = 2 model is equivalent to

a free boson and an Ising fermion with central charge c = 3/2 [20]. There are several

ways of tensoring these two models in order to construct an orientifold compactification.

We find that only vacua made out of six copies of the k = 2 model have the potential

to produce spectra that resemble those of the SM. It is such vacua that we will focus on

this paper. For the other tensor combinations of free field N=2 minimal models, namely

(1,1,1,2,2,2,2), (1,1,1,1,1,1,2,2) and (1,1,1,1,1,1,1,1,1) not even a SM configuration without

tadpole cancellation (i.e. the analog of a local model) was found in [8].

Our goal here is two-fold. First to make a detailed and extensive search for orientifold

vacua that are chirally similar to the supersymmetric SM.1 Second, to provide a qualitative

phenomenological study of the tadpole solutions found, in order to assess their potential

to provide phenomenologically acceptable and interesting realizations of the SSM. If both

of the above goals are achieved successfully, the road is open to a detailed calculation of

the effective potential and interactions.

Our results are summarized as follows:

• There are 96 tadpole solutions found in the (k = 2)6 compactification that all realize

the chiral spectrum No. 14062 in the classification of [8]. They give rise to 8 distinct

massless spectra. There are two possible hidden sector gauge groups: Sp(2) and

O(2). The eight spectra differ apart from the hidden sector gauge group also in the

non-chiral spectrum of massless particles.

• If we relax the assumption made in [8] that no chiral observable-hidden matter is

present, then we find three more chirally distinct spectra, Nos. 101, 559, 800 in the

list of [8]. These include Pati-Salam models but we will not study them further in

this paper.

• Only the tadpole solutions with a hidden Sp(2) group have a phenomenologically

sufficient number of right-handed neutrinos.

• There are three U(1) gauge symmetries, two of which are free of four-

dimensional anomalies and one is “anomalous”. One of the two non-anomalous ones

1The search performed in [8] was not complete, but it rather focused on finding the largest possible

number of chirally distinct examples
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is hypercharge. The other has a massive gauge boson and is therefore expected to be

violated by string-instanton effects.

• In order for this solution to be phenomenologically viable, other points in its moduli

space must be chosen, so that the massless non-chiral exotics obtain sufficiently high

masses in order to satisfy experimental constraints.

• One of the three families has different charges under the two “anomalous” U(1)

symmetries compared to the other two. This has as a consequence that selection rules

for low energy couplings are in effect. In particular, this family remains massless in

perturbation theory.

• There is a single pair of Higgs multiplets

• A µ-term is allowed and must therefore be tuned to small values.

• To protect low-energy lepton number conservation discrete symmetries must operate.

Baryon number is violated only by SU(2)weak instantons.

• The Fayet-Iliopoulos terms appearing in the low-energy potential are shown to be

zero at the tadpole solution point. They must be kept zero as we move in moduli

space. As a byproduct we generalize to arbitrary CFTs/BCFTs previous proofs on

the vanishing of loop corrections to the FI terms provided tadpoles cancel.

• String instanton corrections are necessary (and are classified) in order for the third

family to acquire masses.

• The expected pattern of the neutrino mass matrix is of the see-saw type allowing for

light neutrino masses.

• Although the branes are not in a “unified” configuration, sin2 θW = 6
13 at the string

scale and differs by less than 20% from the unified value of 3
8 . Therefore, a change in

the masses of the charged non-chiral massive particles can accommodate a conven-

tional “unification” of gauge couplings.

• The strong dynamics of the hidden non-abelian gauge group can trigger supersym-

metry breaking. However, to obtain an acceptable scale, appropriate threshold cor-

rections must be advocated just below the string scale.

Although the results indicate that this class of vacua are potentially compatible with phe-

nomenology, this requires also several special conditions to be met. A lot of detailed

analysis is necessary in order to achieve this and we hope to report on this in a subsequent

publication.

2. The tadpole solutions of the Gepner (k = 2)6 orientifold SM

In this paper we consider the tensor product of six N = 2 minimal superconformal field

theories with k = 2. The central charge of each factor is 3
2 , so that the internal CFT
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has c = 9, equivalent to six free bosons and fermions. Each k = 2 factor has 24 primary

fields. Each factor is equivalent to the tensor product of a free boson with 8 primaries

and an Ising model. This means that the resulting CFT can be realized in terms of free

fields, in contrast to most other N = 2 minimal model tensor products (a.k.a. Gepner

models). However, in the construction of modular invariant partition functions (MIPFs),

orientifolds and tadpole solutions no use is made of the specific free field theory properties of

these models. After tensoring the six factors with the space-time NSR fermions, imposing

world-sheet supersymmetry by extending the chiral algebra with the product of all world-

sheet supersymmetry generators, and extending the chiral algebra to obtain space-time

supersymmetry, we end up with a CFT with 2944 primary fields, 512 of which are simple

currents. Under fusion, these simple currents close to form a discrete group Z4×Z4×Z4×Z2.

We now build all the MIPFs that can be constructed using these simple currents, using

the algorithm of [21, 22]. In normal circumstances all these MIPFs would be distinct, but

in this case there are two special circumstances: a permutation symmetry among the six

identical factors, and the fact that each factor contains an Ising model. A special feature

of the Ising model is that its simple current MIPF is identical to the diagonal invariant.

This happens because the only simple current orbit with charge 1
2 happens to be a fixed

point of the simple current (this orbit is formed by the spin field of the Ising model). This

degeneracy extends to products of Ising models, and as a result some generically distinct

MIPFs are actually identical.

The permutation symmetry occurs frequently in other Gepner models, and we deal

with it by considering only one member of a permutation orbit. The Ising degeneracy

occurs only in a few cases and can be dealt with by comparing the resulting MIPFs. The

only problem is that there is some interference between the two degeneracies. It may

happen that an Ising degeneracy does not occur between the selected representatives of

the permutation orbits, but between other members. This will then result in some over-

counting.

Although this degeneracy can be removed in principle,2 we have not implemented this

because the overcounting is only a minor problem. After removing permutations and

identical MIPFs we end up with 1032 MIPFs, and we expect the actual number of distinct

ones to be slightly smaller than this. For each MIPF we construct all simple current

orientifolds, according to the prescription of [16]. The total number of distinct orientifolds

(taking into account known orientifold equivalences as described in [16] and the permutation

symmetry) ranges from 4 to 64, depending on the MIPF. This includes some zero-tension

orientifolds that are of no further interest, since the dilaton tadpole forbids all Chan-Paton

multiplicities.

For each MIPF we then compute all boundary states, using the formula given in [16].

To each of these cases we then search for standard model configurations. Here we apply the

same search algorithm used already in [8] for the other Gepner models. The only difference

is that we remove the upper limit on the number of boundary states, which was set at

2This would involve acting with all 720 permutations on all MIPFs, but this is not completely straight-

forward. First one has to work out how the permutation acts on resolved fixed points, i.e. distinct fields

that come from the same combinations of minimal model primaries.
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1750 in [8] for purely practical reasons. In the case of the 26 model, only a handful of

MIPFs exceed that limit, and therefore we decided to do a complete scan. This did not

yield anything new, though. Indeed, the standard model configurations we describe below

were all already found during the search performed in [8].

The last step in the procedure is to try and solve the tadpole conditions for the hidden

sector, in order to cancel all tadpoles introduced by the orientifold and the Standard Model

configuration. Here too we went slightly beyond [8] by allowing chiral matter between the

observable and the hidden sector. Normally this produces such a huge number of solutions

that it is preferable to require observable/hidden matter to be non-chiral. While chiral

observable/hidden matter is not necessarily a phenomenological disaster (and can even

be desirable in certain circumstances), it does require additional mechanisms to make

it acquire a mass. In this particular case, however, we already knew that the number of

tadpole solutions was extremely small, so it seemed worthwhile to try and relax the criteria.

The search of [8] produced a total of about 19000 chirally distinct standard model

configurations, and tadpole solutions were found for 1900 of them. In the new search

for the 26 model we found tadpole solutions for 4 models. On the list of 19000 (ordered

according to the first time each spectrum occurred,3 and available on request) these were

nrs. 101, 559, 800 and 14062. Only in the latter case did we find solutions with non-chiral

observable/hidden matter. This means that this last case was within the scope of [8].

Nevertheless, the tadpole solutions were not found at that time for a very simple reason:

no attempt was made to solve the tadpole conditions for a certain model if a solution was

already known. In this particular case, there turns out to exist a solution for spectrum

nr. 14062 for Gepner model (2,2,2,6,6), which was found first. It was presented in [8] in

section 6.5, as a “curiosity”. This model is rather similar to the ones presented here, but

the (2,2,2,6,6) model is not a free CFT. It is in fact so similar (including non-chiral matter,

which is not taken into account when comparing spectra) that we expect that these models

are actually related, presumably by an orbifold procedure that maps three copies of k = 2

to two copies of k = 6, but we have not investigated this.

In all orientifolds of all MIPFs of the tensor product 26 the spectrum 14062 occurred

168 times, and in 96 cases there was a solution to the hidden sector tadpole equations.

These solutions occurred for the following MIPF numbers: 41, 414, 415, 416, 417, 418,

644, 646, 651, 652, 662, 1018, 1021. These numbers are labels assigned by the generating

program “kac” to the 1032 MIPFs, and are listed here in order to identify the MIPFs and

reproduce them, if necessary.

For comparison we give here the total number of boundary state configurations with at

least one tadpole solution for the other models: 43008 for nr. 800, 168 for nr. 559 and 6144

for nr. 10. Note that this is not the total number of tadpole solutions: any given boundary

state configuration may admit many, often a huge number, of tadpole solutions. We only

explored the full set of solutions for spectra of type 14062. As already mentioned above,

all tadpole solution for spectrum types 800, 559 and 101 contain chiral observable-hidden

matter. For these three configurations there are no tadpole solutions without such chiral

3Note that in [8] they were ordered according to frequency
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MIPF id Order h11 h12 Singlets Sol. Types Total Glob. An?

41 32 11 17 223 1112 4 No

414 32 17 11 223 3345 4 No

415 32 11 17 223 1112 4 No

416 32 17 11 223 3345 4 Yes

417 32 9 15 219 6678 16 Yes

418 32 11 17 223 1112 4 Yes

644 128 11 17 223 1112 4 No

646 128 9 15 219 6678 12 Yes

651 128 17 11 223 3345 4 No

652 128 17 11 223 3345 4 Yes

662 128 9 15 219 6678 12 Yes

1018 32 9 15 219 6678 8 Yes

1021 32 9 15 219 6678 16 No

Table 1: The MIPFs with tadpole solutions

exotics. On the other hand, for spectrum 14062 all tadpole solutions are free of chiral

exotics. In fact, in some cases there is no observable-hidden matter at all.

Spectrum 14062 has a Chan-Paton group U(3)× Sp(2)×U(1)×U(1), with the hyper-

charge realized as in the familiar “Madrid” configuration [17], but with an interchange of

the rôles of brane c and d for some of the quarks and leptons. In contrast to the Madrid

models, which with very rare exceptions have an exact B−L gauge symmetry, all superflu-

ous U(1)’s in these models are broken, so that the surviving gauge symmetry (apart from

the hidden sector) is exactly SU(3)× SU(2)×U(1). We will discuss these spectra in much

more detail in the next section. Usually we will denote the Chan-Paton factor Sp(2) as

SU(2) when its orientifold origins are unimportant.

Table (1) lists the main characterizations of the MIPFs for which tadpole solutions for

spectrum 14062 exist. We specify the order of the simple current subgroup that produces

them, the Hodge numbers of the compactification and the number of singlets in the spec-

trum for the corresponding heterotic string theory. The number of boundary states is 320

in all cases, and the gauge group in the heterotic theory is E6 × E8 × U(1)5 in all cases.

Of course the orientifolds we construct are based on a type-IIB theory, and heterotic data

are only given here as a way to characterize the MIPF.

The simple current group is Z4 ×Z4 ×Z2 if the order is 32 and Z4 ×Z4×Z2 ×Z2 ×Z2

if the order is 128. Note that the list of Hodge numbers is not mirror symmetric. The

complete list of Hodge numbers of the 26 tensor product is mirror symmetric, even if one

includes the number of singlets and gauge bosons. However, mirror symmetry does not

extend to the boundary states, indeed not even to the total number of boundary states.

Nevertheless, there do exist MIPFs with Hodge data (15,9,219) and even precisely 320

boundary states, but they did not produce any solutions.

Columns 6 and 7 specify some information concerning the tadpole solutions we found.

– 6 –



J
H
E
P
1
0
(
2
0
0
8
)
1
0
6

Spectrum H YA YS PA PS R T X

1 Sp(2) 0 4 0 2 2 1 4

2 O(2) 0 4 0 2 3 0 0

3 O(2) 4 0 0 2 1 2 4

4 Sp(2) 4 0 0 2 0 3 4

5 O(2) 4 0 0 2 1 2 0

6 O(2) 2 2 2 0 1 2 4

7 Sp(2) 2 2 2 0 0 3 4

8 O(2) 2 2 2 0 1 2 0

(2,2,2,6,6) U(2) 4 0 0 2 0 0 0

Table 2: The distinct spectra and their non-chiral exotics. The first eight occur in the (2, 2, 2, 2, 2, 2)

tensor product and are the subject of this paper. The last one has been found in [8] for the (2,2,2,6,6)

tensor product.

In column 7 we indicate for how many standard model configurations at least one solution

exists. It turns out that in each of those cases (i.e. 96 in total) there are in fact four

solutions to the tadpole conditions, one with a hidden sector gauge group Sp(2), and three

with an O(2) hidden sector group. Of the total number of 4 × 96 = 384 solutions only 8

are different. In column 6 we indicate which of those eight solutions occur for each MIPF.

This turns out to depend only on the MIPF, and not on the standard model configuration.

Note that the kind of solution that occurs correlates perfectly with the Hodge data.

The eight distinct spectra are tabulated in table (2). All eight spectra have identical

chiral states, which we specify in the next section. Here we just focus on the differences,

which consist of the choice of hidden sector gauge groups, and some non-chiral exotics.

Column two lists the hidden gauge group H. The other columns specify the multiplicities

of the seven kinds of non-chiral exotics that may occur. We have named them YA . . . X,

and in table (3) we indicate their Chan-Paton representations. For comparison we have

also listed the (2,2,2,6,6) model presented in [8] in table (2). It has an U(2) hidden sector

group with the rare feature of being completely hidden, by not having any massless matter

at all (of course there do exist massive excited states in all open string sectors). Note also

that all these spectra, including the last, have the same total number of non-chiral rank-2

exotics for each of the a,b,c and d branes, which may be distributed in different ways over

symmetric and anti-symmetric representations.

An important additional constraint is the absence of global anomalies. In RCFT

models, this leads to a large number of necessary conditions obtained by adding probe

branes to a given model, as discussed in [23]. Since the probe branes at our disposal are

limited by “rationality” of the RCFT, it is not guaranteed that this exhausts all possible

origins of global anomalies, but we do take into account all the ones we can. In Gepner

orientifolds these constraints eliminate some models, but their effect is limited to rather

few tensor combinations, and is not extremely restrictive even in those cases [24]. Also in

the present class there turn out to be tadpole solutions with global anomalies, but they
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U(3)a SU(2)b U(1)c U(1)d H Y Symbol

A 0 0 0 0 ±1
3 YA

S 0 0 0 0 ±1
3 YS

0 0 0 A 0 0 PA

0 0 0 S 0 ±1 PS

0 0 0 0 A 0 R

0 0 0 0 S 0 T

0 0 V 0 V ±1
2 X

Table 3: The non-chiral exotics that may occur in the eight distinct models.

were already eliminated from the set discussed above. In column 8 of table 1 we indicate

in which cases there were additional tadpole solutions with global anomalies. Note that

these anomalous solutions do not correlate with the Hodge data.

3. The low-energy characteristics of tadpole solution No. 1

All of the tadpole solutions we presented in the previous section are missing two right-

handed singlets in the SM stack. Overall SM singlets, even if they do not come from the

SM stack can in principle play the role of right-handed neutrinos. A look at table 2 shows

that global singlets with zero mass are the multiplets labeled R for the hidden Sp(2) group4

or the multiplets T for the hidden SO(2).

It is preferable for phenomenological reasons (supersymmetry breaking in particular)

to a have a strongly-coupled gauge group in the hidden sector. The presence of a sufficient

number of right-handed neutrinos5 and the requirement of a non-abelian hidden sector

therefore selects spectrum No. 1, which has a hidden Sp(2) group. The complete spectrum

of this solution is shown in table 4.

The solutions we find have unbroken N=1 supersymmetry in four dimensions, therefore

each entry of table 4 corresponds to an N=1 chiral multiplet. The N=1 vector multiplets

for all gauge groups are assumed. As usual V stands for the vector representation, V ∗ for

the conjugate vector representation, S for the two-index symmetric representation while

A stands for the two-index antisymmetric representation. In particular for a U(1) gauge

group, V indicates charge +1, V ∗ → −1, S → +2, while A indicates a missing massless

particle (although the associated stringy tower is intact as the projection alternates at

alternate string levels). Dimension gives the total number of multiplets independent of

4There is another interesting possibility: that we choose as such singlets the fist string level descendants

of the T multiplets. As the projection alternates between the string levels these will be global singlets. In

this case in the spectrum No. 1 of table 2 we may consider an extra three right-handed neutrino singlets,

two of the R type and one of the T type. In spectra Nos. 4 and 7, all such neutrino singlets are of type T
5In cases where large internal volume is present, even a smaller number of right-handed neutrinos can be

phenomenologically acceptable. This works via the presence and mixing of suitably light KK states and as

shown in [2] it is not far from the current data of the neutrino sector. Finally, even in the complete absence

of right-handed neutrino candidates, neutrino masses and mixings can be generated by higher dimension

operators mediated by instantons [36].
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Dim Chirality U(3)a SU(2)b U(1)c U(1)d SU(2)h Y Symbol

3 3 V V 0 0 0 +1
6 Q

2 -2 V 0 V∗ 0 0 +2
3 U

2 -2 V 0 V 0 0 −1
3 D

3 -1 V 0 0 V∗ 0 ±2
3 U

1 -1 V 0 0 V 0 −1
3 D

2 2 0 V 0 V 0 −1
2 L

3 1 0 V V 0 0 ±1
2 K

3 -3 0 0 V V 0 −1 ER

1 1 0 0 V V∗ 0 0 NR

4 0 S 0 0 0 0 ±1
3 YS

2 0 0 0 0 S 0 ±1 PS

4 0 0 0 V 0 V ±1
2 X

2 0 0 0 0 0 A 0 R

1 0 0 0 0 0 S 0 T

Table 4: The massless spectrum of tadpole solution No. 1 of spectrum 14062.

chirality, while Chirality gives the net chiral number of multiplets. Chirality is + by

convention for left-handed fermions and its minus for left-handed fermions. Dimension=3,

Chirality=3 therefore means that there are 3 left-handed multiplets. while dimension=3,

chirality=-1 means there are 2 right-handed and one left-handed multiplets.

The hypercharge tabulated in table 4 is given by

Y =
1

6
Q3 −

1

2
Qc −

1

2
Qd (3.1)

whose gauge boson is massless in this solution.6 This is the Madrid hypercharge embedding

or x = 1
2 in the global classification of [8].

The following massless states are charged (non-chiral) exotics beyond the MSSM:

• A pair of the up-like anti-quarks U .

• The 2 right-handed and 2 left handed 6 representations of SU(3), labelled Ys in

table 4. Although they have fractional hypercharge, all colour singlets that one can

make using them have integer electric charge.

• The 2 right-handed and 2 left handed multiplets labelled X in table 4. They are

doublets of the hidden SU(2)h, and have half-integer Y and electric charge.

• The 1 right-handed and 1 left handed multiplet labelled Ps in table 4. They have

charge ±2 under U(1)d and have integer Y and electric charge.

6As observed in [15, 8] this condition seems to be the strongest constraint towards finding a SM-like

vacuum in Gepner orientifolds.
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U(1)3 U(1)c U(1)d
SU(3)a 0 0 0

SU(2)b 9 1 2

SU(2)h 0 0 0

gravity 0 0 0

Table 5: The mixed four-dimensional anomalies of U(1)’s

• The one real multiplet labelled T in table 4 transforming as the adjoint of the hidden

SU(2)h group.

Finally we should stress that the two chiral multiplets labeled R in table 4 are absolute

singlets (as the antisymmetric of SU(2)h is a singlet) and are expected to play the role of

the missing 2 right-handed neutrinos.

Because of the above fields the particular point in the moduli space where the tadpoles

were solved is not suitable for describing the low-energy world. It is natural to assume that

by moving a distance of order of the string scale in moduli space such non-chiral states

will acquire masses which may be anywhere from 100 TeV to the string scale so they are

directly unobservable. Of course such particles may have indirect effects in the low energy

physics. Below we will consider all possible non-renormalizable superpotential terms and

therefore we are sure to include all indirect effects due to these massive states.

Therefore in the sequel we will assume that the multiplets Ys, X, Ps, T and one

non-chiral pair of the U quarks are massive and have been integrated out.

3.1 Anomalies

It is by now well known that generic U(1) gauge symmetries in orientifold vacua are anoma-

lous. Their anomalies are canceled by the GS mechanism that in four dimensions involves

closed string axion scalars [25]. In the process, the associated gauge bosons acquire a mass

that is generically moduli dependent [26, 27] and the gauge symmetry is broken. Unless

the associated global symmetry is also spontaneously broken by D-terms, it survives in

perturbation theory and is only broken by gauge instantons.

It is important to stress that a U(1) gauge symmetry can be broken and its associated

gauge boson acquires a mass even when the U(1) in question has no four-dimensional

anomalies. This phenomenon was observed in [17, 26] and was explained in [27].

In the vacuum at hand we can calculate the four-dimensional mixed anomalies of the

three U(1) factors. The results are in table 5.

The anomaly matrix is defined KIJ = Tr[QJ(T aT a)I ], where J = 3, c, d, and I =

1 corresponds to the colour SU(3), I = 2 corresponds to the weak SU(2), and I = 3

corresponds to the mixed gravitational anomaly TrQJ .

• Note that the only non-trivial non-abelian anomaly is that with SU(2)b. This implies

that there are two independent U(1) combinations that are free from four-dimensional

anomalies. We find however that only one of them, the hypercharge in (3.1) is

massless. Therefore, all other U(1)’s except Y are massive.
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• U(1)a is baryon number and it is violated only by SU(2)b instantons. This violation is

tiny and therefore baryon number is a very good global symmetry of this vacuum [28].

• None of the two U(1)’s that are anomaly free in four dimensions (aQa + cQc + dQd

with 9a + c + 2d = 0) is violated by gauge instantons. Y remains massless and we

expect no violation due to instantons. However we expect that the other anomaly-free

U(1) symmetry it is broken by stringy instantons.

• Although there are anomalous U(1)’s and mixed anomalies, the gravitational mixed

anomaly is zero.

This vacuum has two extra anomalous U(1)s beyond the SM symmetries. Extra

(anomalous) U(1) symmetries are a generic prediction of orientifold vacua, their number

ranging from a minimum of one to several, [1, 29]. The masses of such gauge bosons can be

low when the string scale is low. They can also be accidentally low even if the string scale

is large in the case of highly asymmetric compactifications, [26]. The phenomenological

consequences of anomalous U(1) gauge bosons in such cases have been explored in [29 – 31].

A review on Z’s from string theory can be found in [32].

4. The low energy MSSM fields

After integrating out the non-chiral exotics we are left with fields that are in one to one

correspondence with the MSSM.7 We have 3 quarks QI , two up and down anti-quarks U i,

Di, of the first type, one anti-quark of the second type: U , one down anti-quark of the

second type D, two lepton doublets, Li, two left handed lepton doublets Ki that together

with the right-handed doublet H will provide the third lepton double and the pair of MSSM

Higgs, three right-handed electrons EI and three (neutrino) singlet N and Ri. They are

all summarized in table 6 along with their various U(1) charges.

There are two immediate observations. A µ-term KiH is not forbidden by the gauge

symmetry in the superpotential but we are at a special point where this term is zero. There

are two possibilities: (a) either this term is forbidden by one of the discrete symmetries of

the vacuum or (b) this term is moduli dependent, and we happen to be at one of its zeros.

In any case we will assume that we are in a region of moduli space that this term is small

compared to the string scale and close to what is required for electro-weak physics.

The second observation is that because one of the lepton doublets (orthogonal to the

one that mixes with H) has exactly the same quantum numbers, (including the anomalous

U(1) charges) as the Higgs, we expect the lepton number to break at the renormalizable

level. In this theory, baryon number as we will discuss later is expected to be a very good

global symmetry as only SU(2) gauge instantons break it.8 Because of this the constraints

on lepton number violation are weak, but exclude however renormalizable couplings. To

7Our conventions are the I, I, K = 1, 2, 3, i, j, k = 1, 2.
8There is also the possibility that string instantons break it, but we will not further entertain this

possibility here.
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Number U(1)3 SU(2)b U(1)c U(1)d Y Chiral field

3 1 2 0 0 +1
6 QI

2 -1 1 -1 0 −2
3 U i

2 -1 1 1 0 +1
3 Di

1 -1 1 0 -1 −2
3 U

1 -1 1 0 1 +1
3 D

2 0 2 0 1 −1
2 Li

2 0 2 1 0 −1
2 Ki

1 0 2 -1 0 +1
2 H

3 0 1 -1 -1 +1 EI

1 0 1 1 -1 0 N

2 0 1 0 0 0 Ri

Table 6: The low energy MSSM states as left-handed chiral multiplets

proceed we will now write all quadratic and cubic terms in the superpotential that are

allowed by the gauge symmetries both anomalous and non-anomalous.

The most general gauge-invariant quadratic superpotential is

W2 = KH̄ + RR (4.1)

while the cubic one is

W3 = QUK + QDH̄ + QUL + LNH̄ + LEK + KH̄R + RRR (4.2)

where we have dropped both the indices and coefficients as we are interested in the quali-

tative features.

The following observations are relevant

• A linear term in R is allowed in the superpotential as R is a global singlet. This term

is zero in the Gepner point, but may appear in other regions of moduli space and

along with gaugino condensation may trigger supersymmetry breaking.

• It is reasonable to assume that the role of Higgses is taken over by H̄ and a linear

combination of Ki.9

• The anti-quarks U ,D have no Yukawa coupling in W3.

• Because the Higgs H and one of the leptons have the same global quantum numbers,

several couplings violate lepton number.

Looking further we may write down the most general quartic superpotential consistent

with the gauge symmetry,

W4 = (QU)(LN) + (QD)(LE) + (QU)(QD) + (QU)(QD) + (LL)(EN) + KH̄KH̄

+(QD)H̄N + (QD)EK + KH̄RR + W3 R (4.3)

9There is the further possibility that Li also participate in electro-weak symmetry breaking. In that

case the U quark has a tree-level Yukawa coupling.
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We observe that if the right-handed neutrino N obtains a vev, the D quark (not to be

confused with the two quarks D) acquires a Yukawa coupling, which will be very small for

any acceptable value of the vev of N .

5. Lepton number violation and discrete symmetries

To avoid lepton number violation at the observable level a discrete symmetry must be

invoked. This discrete symmetry must distinguish between the two chiral doublets K1,K2

that will provide one Higgs and one lepton doublet. There may be several such discrete

symmetries but the one that will do the job is the following Z2 symmetry

K1 ↔ K2 , Li → −Li , EI → −EI , N → −N , Ri → −Ri (5.1)

If we now label K1 + K2 → H which will now be the Higgs and K1 − K2 → L which will

now be the third lepton doublet, we may rewrite the superpotentials that are invariant

under such a symmetry

W2 = HH̄ + RR (5.2)

W3 = QUH + QDH̄ + LNH̄ + LEH + LRH̄ (5.3)

W4 = (QU)LN + (QD)LE + (QU)(QD) + (QU)(QD) + LLEN +

+LLH̄H̄ + HHH̄H̄ + (QD)EL + HH̄RR + (QU)LR + (QU)LR +

+LELR + HH̄RR + RRRR (5.4)

We observe that

• Lepton number is preserved at the renormalizable level. If the string scale and

the scale of massive exotics is beyond 10 TeV or so, this will also make the non-

renormalizable contributions to lepton number violation unobservable

• The U , D quarks as well as the electron singlet associated with L remain massless.

Products of Gepner models typically have large discrete symmetries. These might

be broken by the simple-current extensions procedure, as well as turning on closed string

moduli. It is however expected that in subspaces of the moduli space there are remnants

of the discrete symmetry. As the previous analysis shows, such symmetries are crucial for

the phenomenological viability of this class of vacua and their presence must be carefully

analyzed but this is beyond the scope of the present paper.

6. The D-terms

The general form of the D-term potential is

VD =
∑

i

D2
i , (6.1)
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For the U(1)’s the D-term has the general form

Di = ξi +
∑

(qi|Xi|
2) (6.2)

where qi is the charge of the chiral superfield Xi under the corresponding gauge group

U(1)i, and ξi is the associated FI term. For the three U(1)’s of the model we have

Da = ξa + QIQI† − U iU i† − DiDi† − U iU i† −DD†, (6.3)

Dc = ξc − EIEI† − U iU i† + DiDi† + HH† + LL† − HH
†
+ NN †, (6.4)

Dd = ξd − EIEI† + LiLi† − U iU i† + DD† − NN † (6.5)

The contribution from non - abelian D terms to the Higgs potential has the standard

from

D2
SU(2) =

g2

8
(HH† − HH

†
)
2
+

g2

2
(HH

†
)(HH†) (6.6)

Finally the D-term potential is

VD = D2
a + D2

c + D2
d + D2

SU(2) (6.7)

6.1 The Fayet-Iliopoulos terms

An important ingredient for the phenomenology of orbifold models is the presence and size

of FI terms. FI terms can appear at disk level, and their presence is typically tracked by a

spontaneous breaking of the associated U(1) global symmetry due to the D-term potential

they generate. An important question is whether a FI term can appear at one loop if it is

zero at tree level. This was answered in the negative in [33] where a calculation of the FI

term was performed in the Z3 orientifold, and was argued to hold for more general orbifolds.

This was confirmed in the case of intersection D6 branes in a flat background, [34]. However

it is not obvious that such a conclusion holds more generally for the RCFT vacua that we

study here.

Consider a general orientifold ground state based on an arbitrary CFT and its BCFT.

We assume that the CFT and BCFT realize a ground state with N=1 spacetime four-

dimensional supersymmetry. Moreover, all consistency conditions are satisfied at tree-level

(sphere and disk) and the disk tadpoles have been canceled. All such assumptions are valid

in the vacua we are considering made out of RCFTs including Gepner models.

Consider the U(1) gauge groups in this ground state that may be anomalous, but are

massless at tree level (the mass developed by anomalous U(1)’s is a annulus effect [26].)

This by definition implies that their associated FI term is zero at disk order as it would

otherwise break the gauge symmetry or supersymmetry at tree level. We will now show

that no FI term can be generated at one loop.

To track a non-zero FI term at one loop we may calculate the one-loop mass term of

scalars charged under the U(1) in question. Such scalars were massless at tree level.

There are three diagrams at one loop that contribute to the mass term of such scalars.

The first is an annulus diagram with the two scalar vertex operators inserted on the same

boundary. The second is a Moebius diagram with the two scalar vertex operators inserted
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Figure 1: Annulus and Moebius diagrams with the two scalars inserted on the same boundary

and their UV factorization.

Figure 2: Annulus diagram with the two scalars inserted on opposite boundaries and its UV

factorization.

on the only boundary of the surface. Both of these are drawn in figure 1. The third diagram

is shown in figure 2 and involves an annulus with the two vertex operators inserted on

opposite boundaries.10

All of these diagrams are very similar in structure to the ones we must consider in

order to calculate the mass of anomalous U(1) gauge bosons in orientifolds [26]. In such

diagrams, the two vertex operators give a kinematical piece that is O(p2). Therefore, to

obtain a contribution to the mass that is O(1) as the momentum is small (p2 → 0), we must

obtain an 1/p2 pole from the integration over the moduli of the surface. There are two

corners such divergent terms can appear. In the open-string IR channel, this divergence is

logarithmic at best (or finite). The only source of the pole is in the UV, and it is a contact

term. It can be obtained by going to the transverse closed string channel and then looking

at a massless divergence. At that limit the diagrams factorize as shown in figures 1 and 2.

For the two diagrams of figure 1 the residue of the 1/p2 pole is given by a product of a

tree-level three-point coupling that couples a scalar and its conjugate to a massless closed

string mode, and the sum of the disk level tadpoles. Therefore, if tadpoles cancel at tree

level this contribution is identically zero.

On the other hand, in the diagram of figure 2 the residue of the 1/p2 pole is a product

of two disk two point functions, each of them mixing the charged opens-string scalar to

a closed string massless state. However, if the U(1) symmetry is intact at tree level such

two-point mixing terms are identically zero.

10This diagram was not considered in the early analysis of [33].
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Therefore, there are no one-loop corrections to FI terms in orientifold vacua under

the conditions spelled out earlier. It should be noted that as the arguments above assume

the background of CFT, they are not automatically applicable to vacua that contain RR

fluxes.11

Once the one loop correction is zero no further perturbative or non-perturbative cor-

rections are expected.

Returning to our vacuum, we deduce that the FI are zero at the Gepner point, but

they may be non-zero if we move in some directions of the closed string moduli space. The

moduli along these directions are in the same chiral multiplets as the axions that cancel

the anomalies of the relevant U(1) symmetries. Therefore it is necessary to not move in

these directions.

7. Instanton corrections

As we have already seen, there is a remaining problem towards the phenomenological

viability of the string vacuum under study, namely that there is no source for the masses

of the U ,D quarks and the L leptons: a whole family is so far massless.

The missing couplings violate the charge conservation of the two anomalous U(1) sym-

metries. We expect that instanton effects (both gauge instantons and stringy instantons)

must non-perturbatively violate these symmetries. This is therefore a source for the missing

couplings.

Spacetime instantons in string theory have been analyzed for the first time after the

advent of non-perturbative duality symmetries, (see [35] for a review). Their study has

obtained a boost recently [36] as it became obvious that they are crucial for several phe-

nomenological questions in orientifold vacua, from generating neutrino masses to Yukawa

couplings to triggering supersymmetry breaking.

In our case to generate the relevant terms needed we need two kinds of instantons:

one that violates (U(1)c,U(1)d) charges by (-1,1) units that we will call I and a conjugate

one I∗ that violates charges by (1,-1) units.12 In the case they may generate the following

non-perturbative superpotential up to cubic order (further details are beyond the scope of

the paper)

W np
I = QUL + QDH̄ + LLE + LH̄ , W np

I∗I∗ = NN + NNR (7.1)

W np
I∗ = QUK + EKK + KH̄N + N + NR + NRR (7.2)

It is important to arrange that the instantons do not violate the Z2 discrete symmetry,

in which case the surviving non-perturbative superpotential reads

W np = QDH̄ + QUH + ELH + LNH̄ + NN + NR (7.3)

and as expected provides Yukawa couplings for U ,D quarks, the L lepton and the neutrinos.

11They seem though to be valid perturbatively in the RR field insertions.
12This cannot be the anti-instanton of I, as supersymmetry forbids the generation of superpotential

couplings in that case.
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L1 L2 L N R1 R2

L1 0 0 0 v ve−S ve−S

L2 0 0 0 v ve−S ve−S

L 0 0 v2

Ms
ve−S v v

N v v ve−S Mse
−2S Mse

−S Mse
−S

R1 ve−S ve−S v Mse
−S Ms Ms

R2 ve−S ve−S v Mse
−S Ms Ms

Table 7: Order of magnitude estimates of the Neutrino mass matrix elements. v stands for the

Higgs vev, Ms is the string scale, and e−S stands for an instanton contribution.

In principle one can search for boundary states with the required number of zero-modes

to produce the required stringy instantons. However, there are several complicating issues

that have to be dealt with, such as the fact that we are not in the exact RCFT point

(which may lead to differences in the number of non-chiral zero-modes), the postulated

Z2 symmetry, the possibility that undesired zero-modes may be lifted by fluxes, which

we cannot take into account in the present formalism, the fact that tree-level couplings

between physical fields and zero-modes are needed, plus the fact that not all boundary

states present in the continuum may be accessible within the context of RCFT. For this

reason a negative result would not be conclusive anyway, and we will not investigate this

further in the present paper, but take as our working hypothesis that the required instanton

corrections exist.

8. Neutrino masses

An important ingredient in any realisation of the Standard Model is whether neutrino

masses near what is measured today are possible. A favourite mechanism for generat-

ing such neutrino masses is the see-saw mechanism and as we will see a version of this

mechanism is possible in our vacuum.

We will recollect here the superpotential that is relevant for neutrino masses

from (5.2), (5.3), (5.4) and (7.3). It includes both renormalizable and non-renormalizable

contributions as well as non-perturbative effects.

Wν = RR + LNH + LH̄R + LLH̄2 + LH̄R + LH̄N + NN + NR (8.1)

The order of magnitude of the contributions of each term in the superpotential to the

neutrino mass matrix is summarized in table 7. In this table the Higgs vev is labeled as v,

the string scale Ms is expected to be near the unification scale, and the instanton factors

are sketchily labeled e−S and they can be small.

It is a straightforward numerical exercise to verify that a matrix such as that in table 7

can reproduce neutrino masses as suggested by experiment with O(1) coefficients.13

13We thank P. Anastasopoulos for doing this calculation.
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9. Gauge couplings and unification

In orientifold models the hypercharge is given by14

Y =
∑

i

ki Qi (9.1)

where Qi are the overall U(1) generators of U(Ni) groups coming from complex brane

stacks. From this we can determine, [1, 5], the hypercharge coupling constant in the

standard field theory normalization as follows

1

g2
Y

=
∑

i

2Ni

g2
i

(9.2)

where gi is the gauge coupling of i-th stack, at the string scale. These are determined at the

tree-level by the string coupling and other moduli, like volumes of longitudinal dimensions

as well as potential internal magnetic fields. At higher orders, they also receive string

threshold corrections.

For our vacuum with the hypercharge embedding (3.1) we obtain

1

g2
Y

=
1

6g2
a

+
1

2g2
c

+
1

2g2
d

(9.3)

from which we may compute the sin2θW at the string scale

sin2 θW ≡
g2
Y

g2
b + g2

Y

=
1

1 +
g2

b

6g2
a

+
g2

b

2g2
c

+
g2

b

2g2
d

, (9.4)

We have neglected stringy thresholds here, but they can be computed following [37].

At the Gepner point and at the string scale, ga = gb√
2

= gc = gd. The extra factor for

gb appears because the b brane is a real brane and this changes the normalization of the

gauge coupling. Also (9.4) gives

sin2 θW (Ms) =
3

10
(9.5)

This value differs from the usual GUT value 3/8 by 20%,

As shown in appendix A, there is no scale at which the weak (SU(2)) coupling constant

can become twice the strong coupling constant as is the case at the Gepner point. This

suggests that a correct fit to the SM gauge couplings is possible if in the appropriate

position in moduli space, this relation is modified appropriately. The best case is that one

moves to a point in moduli space where gb becomes equal to ga. In such a case if we assume

for example ga = gb = gc = gd then

sin2 θW (Ms) =
6

13
(9.6)

that differs from 3/8 by about 20%. In this case we show in appendix A that the standard

unification ratio can be adjusted by lowering the mass scale of non-chiral exotic multiplets

below the string scale. Of course several other intermediate possibilities are also allowed.

14We neglect here the possibility that traceless generators appear in the hypercharge. This happens many

times, [8], but is not relevant for the vacua studied here.
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10. On supersymmetry breaking via gaugino condensation

The hidden sector gauge group, SU(2) has a coupling that becomes strong provided its

chiral multiplets have masses close to the string scale. This will drive gaugino condensation

and can break supersymmetry.

At the scale where the SU(2)h gauge group becomes strongly coupled the corresponding

gaugino condensate can trigger the supersymmetry breaking [38]–[40] (see [41]–[42] for a

review). In particular the supersymmetry breaking terms in the low energy effective action

have the form 1
Mstr

∫

d2θW αWαΦΦ, where Wα is a chiral superfield whose lower component

is the gaugino λα and Φ is a matter chiral superfield.15 After the gaugino condensate

develops a vacuum expectation value the mass term of the form <λλ>
M2

str

can be generated.

The value of the gaugino condensate is related to the scale Λ as < λλ >∼ Λ3 (an exact

relation for the case of SU(2) gauge group can be found in [43]). From this relation, we

must have Λ ∼ 1011.7 GeV in order to have a supersymmetry breaking scale of the correct

magnitude.

To estimate a scale where the hidden sector gauge group SU(2) becomes strongly

coupled we use the equation

Λ = Ms e
1

2b
h

α̃(Ms) , (10.1)

where

bh = 2NT +
1

2
NX − 6, (10.2)

and NT and NX are number of the chiral superfields T and X from the hidden sector which

contribute to the corresponding one loop beta-function. We take α̃−1(Mstr.) ∼ 323.5. One

can consider different values for bh. Let us first take the case that no chiral superfields

contribute to bh, (NT = NX = 0) i.e., one has only the contribution from the gauge

bosons. One gets Λ ∼ 104.2 GeV. Another case is when one X-field contributes to bh

(NT = 0, NX = 1). In this case one has Λ ∼ 103.2 GeV. If there is a contribution from

more than one field X, the corresponding value of Λ will lie below the scale MZ .

To obtain a high enough value of the gaugino condensation scale thresholds of KK

states must be invoked. A direct computation shows that if the compactification scale is of

the order of 1015GeV , KK descendants of the SU(2) vector multiplet will drive the SU(2)

coupling strong at Λ ∼ 1011.7 GeV.

11. Chiral symmetry breaking in the hidden sector

The vacuum discussed here has a spectrum tabulated in table 4. In particular, the hidden

sector SU(2)h has a chiral multiplet in the adjoint as well as 4 multiplets in the fundamental,

half of them carrying Y = 1
2 and the other half Y = −1

2 . Neglecting for the moment the

15Am alternative mechanism of the supersymmetry breaking via the gaugino condensate has been sug-

gested in [44]–[45] in the framework of the brane world scenario. In these models the Standard Model gauge

fields are propagating in the bulk, while the matter is localized on the brane. The value of the mass terms

in these models depend on the size of the extra dimension.
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SM interactions, there is an SU(4) chiral symmetry (the fundamental representation of

SU(2) is pseudoreal).

If we label the 4 SU(2)h doublet fermions by XI
a,α where a is the SU(2)h spinor index,

α = 1, 2 is the spin index and I = 1, 2, 3, 4 is a flavor index, then Y (X1,2
α ) = 1

2 , Y (X3,4
α ) =

−1
2 . A gauge invariant order parameter for chiral symmetry breaking is

ZIJ = XI
a,αXJ

b,βǫαβǫab , ZIJ = −ZJI (11.1)

and its expectation value breaks chiral symmetry SU(4) → Sp(4) [50].

The alignment of the chiral condensate is however crucial concerning the (spontaneous)

breaking of U(1)c and eventually electromagnetism. As the limits on the photon mass are

very stringent, this issue is of crucial importance in assessing the viability of this string

vacuum. The hypercharge of Z12 is Y = 1, that of Z34 is Y = −1 while the other four ZIJ

have Y = 0.

As in technicolor, the effective potential is generated by the exchange of the SM gauge

bosons and it will prefer a direction where the U(1)c is unbroken, [50]. As such directions

exist, and are given by Z12 = Z34 = 0, we conclude that for massless X fields, U(1)em
remains unbroken. If we now move in moduli space, so that the X multiplets obtain an

SU(4) invariant mass, we are guaranteed to remain at the same minimum and U(1)em is

still expected to remain unbroken.

So far our discussion above assumes the absence of supersymmetry. In the presence of

unbroken supersymmetry, the potential for vacuum alignment due to the gauge interactions

or masses is identically zero because of supersymmetry. However, if eventually supersym-

metry is broken at a low scale then the potential discussed in the non-supersymmetric case

resurfaces and our earlier conclusions are valid.
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A. Analysis of the gauge couplings

In this appendix we give a brief analysis of the renormalization group equations for gauge

coupling constants (see also [46] for a similar discussion). In particular we will show that

if the couplings at string scale are related by a relation similar to that of the Gepner point

point, ga = gb√
2

= gc = gd, (which in particular implies sin2 θw = 3
10) then there is no way
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of fitting to the low energy coupling constants of the standard model. In particular we will

derive an upper bound for the weak coupling constant for this this to be possible. We will

then investigate another relation at the string scale, namely ga = gb = gc = gd, (which in

particular implies sin2 θw = 6
13 ) which as we show, fits the SM couplings, if some of the

non-chiral exotics have masses below the string scale. In general as we vary the appropriate

closed string moduli, the couplings at the string scale will generically vary, and the two

relations we investigate here are two indicative cases.

We use the one-loop renormalization group equations

1

α̃i(Q)
=

1

α̃i(µ)
− 2bi log

Q

µ
, (A.1)

where α̃1 = 5
3

g2
Y

16π2 , α̃2 =
g2

b

16π2 , α̃3 =
g2
3

16π2 and g2
Y , g2

b and g2
3 are the coupling constants

of U(1)Y , SU(2)b and SU(3) gauge groups. As we have mentioned before, we ignore the

stringy threshold corrections in the renormalization group equation (A.1). The coefficients

in the renormalization groups equations without taking into account the contribution of

the hidden sector fields are [47]

b1 =
4

3
NFam +

1

10
NHiggs, b2 = −

22

3
+

4

3
NFam +

1

6
NHiggs, b3 = −11 +

4

3
NFam, (A.2)

for a case of a non-supersymmetric theory and

b1 = 2NFam +
3

10
NHiggs, b2 = −6 + 2NFam +

1

2
NHiggs, b3 = −9 + 2NFam, (A.3)

for the supersymmetric case theories. Here NFam is a number of families of leptons and

quarks and NHiggs is a number of Higgs (super)fields. Since we have three families and two

Higgs (super)fields the values of the coefficients bi are

b1 =
21

5
, b2 = −3, b3 = −7, (A.4)

for energies below SUSY breaking scale and

b1 =
33

5
, b2 = 1, b3 = −3, (A.5)

for energies above SUSY breaking scale (that we take to be equal to 1TeV). We assume

that some of the non-chiral exotics acquire masses at an intermediate scale M which is

between the SUSY breaking scale and the string scale. Therefore these fields contribute to

the running of the coupling constants at energies above the scale M . The corresponding

contributions to the coefficients bi are

∆b1 =
3

10
NX +

2

5
NYs

+
3

5
NPs

, ∆b2 = 0, ∆b3 =
5

2
NYs

. (A.6)

where NX , NYs
and NPs

are the numbers of superfields X, Ys and Ps which get masses at

the scale M .
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We can now estimate the value of the scale M by fitting the gauge couplings to the

observable values. Let us denote 3g2
w/5g2

Y = 3
5ctg2θW (Ms) ≡ γ. The renormalization group

equation reads

1

α̃1(Msusy)
+ 2b1 log

Msusy

Ms

+ 2∆b1 log
M

Ms

= γ

(

1

α̃2(Msusy)
+ 2b2 log

Msusy

Ms

)

, (A.7)

From the equation (A.7) we observe that not all possible values of γ are allowed, since the

value of ∆b1 log Ms

M
must be positive.16 The limiting value of γ corresponds to the case

of the “standard” unification of coupling constants i.e., γ = 1 and ∆b1 = 0. Therefore γ

must be less or equal to 1. On the other hand ∆b1 log Ms

M
can not be too large, since it will

imply that the value of the scale M is very low. Estimating the lowest possible value of

M to be around 1 TeV we get the lowest value of γ to be ∼ 0.26 (this corresponds to the

maximal value of ∆b1). Therefore we conclude that the value of γ must be between 0.26

and 1.

Therefore we conclude that the case ga = gb√
2

= gc = gd is excluded since in this case

γ = 7
5 . On the other hand for the case ga = gb = gc = gd is allowed since γ = 21

30 . Let us

consider this case in more detail. The renormalization group equation now reads

1

α̃1(Msusy)
+ 2b1 log

Msusy

Ms

+ 2∆b1 log
M

Ms

=
21

30

(

1

α̃2(Msusy)
+ 2b2 log

Msusy

Ms

)

, (A.8)

where the coefficients bi and ∆bi are given by (A.5) and (A.6) and the values of α̃1(Msusy)

and α̃2(Msusy) can be obtained from (A.1), (A.4) and their values at MZ (∼ 102 Gev) scale

(see for example [48]–[49])

5

3

g2
Y (MZ)

4π
= 0.017,

g2
b (MZ)

4π
= 0.034,

g2
3(MZ)

4π
= 0.118. (A.9)

From the equation (A.8) one obtains (we have taken Ms ∼ 1016GeV )

∆b1 log
Ms

M
= 49.14, (A.10)

Obviously the value ∆b1 and therefore the value of the scale M depends on how many and

which superfields from the hidden sector contribute to the running of the coupling constant

g2
Y between scales M and Ms. For example let us consider the case when all non-chiral

exotics contribute to the running of the coupling constant, i.e,. NYs
= 4, NX = 4, NPs

= 2.

This gives ∆b1 = 4, therefore log Ms

M
= 12.3 and M ∼ 4.5× 1010 GeV. Let us note that this

case will also change the running of the strong coupling constant comparing to the usual

MSSM because of Ys field. Another possible case is when fields Ys obtain their masses at

the string scale, i.e., NYs
= 0, NX = 4, NPs

= 2. One has ∆b1 = 2.4, log Ms

M
= 20.5 and

M ∼ 1.25 × 107 GeV. Another example is NYs
= 1, NX = 1, NPs

= 2. In this case one has

∆b1 = 1.9 and M ∼ 5.8 × 104 GeV.

Therefore one can conclude that if some of the hidden sector fields obtain their masses

at an intermediate scale M which is between SUSY breaking scale and the string scale,

one can have a correct fitting of gauge coupling constants at the string scale, which is

compatible with their low energy values.

16It is in principal possible that stringy thresholds can bypass this constraint.
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B. Minimisation of the Higgs potential

As it was explained in the section 5, the bosonic component of the linear combination

H1 +H2 is expected to develop a vacuum expectation value and will be therefore identified

with the Higgs field Hu. Because of the presence of singlets R the Higgs potential is

different from that of the MSSM and we analyze its minimization here.

Ignoring the terms which come from fourth order terms in the superpotential (like

HHHH) the relevant part of the potential has the form

V = m2
1HH† + m2

2HH
†
+ m2

3(HH − H
†
H†) +

g2

8
(HH† − HH

†
)
2

(B.1)

+
g2

2
(HH

†
)(HH†) + η2(HH)(H

†
H†) +

g2
Y

8
(ξY + HH† − HH

†
)
2
,

where the term proportional to the parameter η comes from the terms of the type HHR

in the superpotential. Let us further take an ansatz for the Higgs fields as

H1 = vu, H2 = vd. (B.2)

The extremization conditions are
(

m2
1 +

ξg2
Y

4

)

vu − m2
3vd +

g2 + g2
Y

4
(v2

u − v2
d)vu + ηvuv2

d = 0, (B.3)

(

m2
2 −

ξg2
Y

4

)

vd − m2
3vu −

g2 + g2
Y

4
(v2

u − v2
d)vd + ηv2

uvd = 0. (B.4)

Introducing the parametrization vu = v cos β and vd = v sin β we can solve the last two

equations

v2 = −4
m̃2

1 − m̃2
2 tan2 β

(g2 + g2
Y )(1 − tan2 β) + 8η2 sin2 β

(B.5)

sin 2β =
2m2

3

m̃2
1 + m̃2

2 + η2
(B.6)

where we have denoted m̃2
1 = m2

1 +
ξg2

Y

4 and m̃2
2 = m2

2 −
ξg2

Y

4 . The gauge symmetry

breaking condition (i.e., the conditions that the solution (B.5)–(B.6) is the minimum) are

m̃2
1m̃

2
2 < m4

3 and 2m2
3 < m̃2

1 + m̃2
2 + η2
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[6] R. Blumenhagen, M. Cvetič, P. Langacker and G. Shiu, Toward realistic intersecting D-brane

models, Ann. Rev. Nucl. Part. Sci. 55 (2005) 71 [hep-th/0502005].
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[36] M. Billó et al., Classical gauge instantons from open strings, JHEP 02 (2003) 045

[hep-th/0211250];
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